《通俗天文学》

下载本书

添加书签

通俗天文学- 第10部分


按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
暗淡不明时,可以很容易换上新的。实用的反射望远镜,为了避免像差,视场一般比较小,为了扩大视场,常常增加像场改正透镜。对于反射镜的材料,只要求它的膨胀系数较小、应力较小和便于磨制。
  1918年底,海尔主持建造的口径254厘米的胡克望远镜投入使用。天文学家用这架望远镜第一次揭示了银河系的真实大小和我们在其中所处的位置。而且,哈勃就是通过这台望远镜的观察提出了宇宙膨胀理论。
  1930年代,胡克望远镜的成功激发了天文学家建造更大反射望远镜的热情。1948年美国帕洛马山天文台建造了口径508厘米望远镜,命名为海尔望远镜,以此纪念卓越的望远镜制造大师海尔。这架望远镜从设计到完工经历了二十多年,尽管比胡克望远镜分辨能力更强,但它并没有使我们对宇宙有更新的认识。正如阿西摩夫所说:“海尔望远镜就像半个世纪以前的叶凯士望远镜一样,似乎预兆着一种特定类型的望远镜已经快发展到它的尽头了。”1976年苏联在高加索建成了一架600厘米的望远镜,但它也没发挥多大作用,更加印证了阿西摩夫所说的话。
  

折反射望远镜
折反射望远镜出现于1814年,顾名思意,它是由折射元件和反射元件组成的。哈密尔顿提出在透镜组中间加入反射面,以增加光焦度,这样就能用一般的玻璃得到色差改正比消色差物镜更好的望远镜。
  1931年,德国光学家施密特别出心裁地用一块接近于平行板的非球面薄透镜作为改正镜,与球面反射镜配合,制成了可以消除球差和轴外像差的折反射望远镜。这种望远镜就是施密特望远镜,它视场大、像差小,适合于拍摄大面积的天区照片,尤其对暗弱星云的摄影效果非常突出。
  1940年马克苏托夫制作出了另外一种折反射望远镜。它用一个弯月形状透镜作为改正透镜,制成了另一类折反射望远镜,它的两个表面是两个曲率不同的球面,相差不大,但曲率和厚度都很大。它的所有表面均为球面,比施密特望远镜的改正板容易磨制,镜筒也比较短,但视场比施密特式望远镜小,对玻璃的要求也高一些。
  折反射望远镜特别适合于业余的天文观测和天文摄影。现在,施密特望远镜和马克苏托夫望远镜已经成了天文观测的重要工具。
  书包 网 。 想看书来

望远镜摄影术
天文学的最大进步之一便是摄影术在天体研究上的应用。回到19世纪40年代,纽约的德雷珀(Draper)成功完成了一张月亮的银板照相(daguerreotype)。利用更进步的发明,哈佛天文台的邦德(Bond)和纽约的卢瑟福(Rutherford)开始把这项技术应用到月亮星辰上面去。这些先驱的企图当然不能与现代的天体摄影相媲美,但是卢瑟福所摄的昴星团及其他星团的相片到现在还有天文学的价值,也就可见他们的成功了。
  为星辰照相是可以用普通照相机的,只要我们把它安置得像一架赤道仪一样可以追随星辰的周日视运动。几分钟的曝光便可以拍摄到比肉眼所见更多的星了——事实上用大照相机的拍摄是连一分钟也用不到的。可是天文学家平时所用的却是一种摄影望远镜。普通摄影机自然也能用,只要加上相当的改善装置,但为了得到最好的效果起见,望远镜的物镜必须造得使紫光蓝光到同一焦点,因为这种光是摄影底片最敏感的。
  为摄影而设计的折射望远镜常做得比同口径的目视望远镜要短些,为的是可以同时多见更大的天空。同时为了使大视野的像更清晰并减少颜色的模糊,其中的物镜常是两重的,便是所谓的“双分离物镜”(doublet)。例如巴纳德(Barnard)用来成功实现他的举世无双的银河及彗星摄影的布鲁斯双分离物镜(Bruce doublet)。而哈佛天文台的61厘米双分离物镜,曾经大大增加了我们对于南半天球的知识。只要物镜充分消去色散以后,折射望远镜是既可以目视又可用作摄影研究的。
  在今日说来,摄影底片已大量的代替了眼睛用在望远镜上了。晴朗的天空被用作大量的摄影,而这些永久的记录又便于精密的研究。常常在一个特别有趣的天体(例如新行星或新星)发现以后,天文学家还可以在早先的该部分天空影片中寻找发现前许多年的历史。发现冥王星时的情形便是这样。
  古代的天文学家记录太阳黑子、日食、行星、彗星、星云及其他天体的现象都用尽可能正确的图画。这些图画要长时间才能制成,其中还有艺术家个人的偏见。有时两位天文学家对同一天体的两张画竟互不相似,或者到后来又发现与原先的也大不相同。用摄影术我们可得到更真切的天体的影像,而且常常需要的时间更短。
  天体摄影最大的优点是在长时间的曝光之后,底片上可得到许多肉眼看不大清楚或简直看不见的情形。譬如说,有些星云在照片中很明显,眼睛却在最大的望远镜中也不能看见。对一个极其黯弱的天体摄影需要若干小时的曝光,需要望远镜的活动部分移动得异常准确,需要天文学家的技术与耐性,这才能得到一张清晰的图画。
  光电耦合器件CCD的应用,使照相底片也成为了历史。CCD可对天体进行实时观测,量子效率更高,拥有照相底片办不到的许多优点。
  

大型光学望远镜
凯克望远镜(Keck I,Keck II)
  凯克望远镜是当前世界上已投入工作的口径最大的光学望远镜,Keck I 和Keck II分别在1991年和1996年建成,它们配置完全一样,而且都放置在夏威夷的莫纳克亚,用于干涉观测。它的名字源于为它捐赠建造经费的企业家凯克(Keck?W? M)。
  它们的口径都是10米,由36块六角镜面拼接组成,每块镜面口径均为1.8米,而厚度仅为10厘米,通过主动光学支撑系统,使镜面保持极高的精度。焦面设备有三个:近红外照相机、高分辨率CCD探测器和高色散光谱仪。
  “凯克这样的大望远镜,可以让我们沿着时间的长河探寻宇宙的起源,甚至能让我们一直向回看,看到宇宙最初诞生的时刻。”
  欧洲南方天文台甚大望远镜(VLT)
  欧洲南方天文台自1986年开始研制由四台8米口径望远镜组成一台等效口径为16米的光学望远镜。这四台8米望远镜排列在一条直线上,它们均采用地平装置,主镜采用主动光学系统支撑,指向精度为1秒,跟踪精度为0.05秒,镜筒重量为100吨,叉臂重量不到120吨。这4台望远镜可以组成一个干涉阵,做两两干涉观测,也可以单独使用每一台望远镜。
  大天区多目标光纤光谱望远镜(LAMOST)
  LAMOST是中国正在兴建中的一架有效通光口径为4米、焦距为20米、视场达20平方度的中星仪式的反射施密特望远镜。它把主动光学技术应用在反射施密特系统,在跟踪天体运动中作实时球差改正,实现大口径和大视场兼备的功能。LAMOST的球面主镜和反射镜均采用拼接技术,并且采用多目标光纤的光谱技术,光纤数可达4 000根,而一般望远镜只有600根。
  预计LAMOST将极限星等推到20.5等,比SDSS计划高2等左右,实现107个星系的光谱观测,把观测目标的数量提高1个量级。
   电子书 分享网站

射电望远镜
1932年,央斯基(Jansky K. G.)用无线电天线探测到来自银河系中心人马座方向的射电辐射,从而标志着人类打开了在传统光学波段之外观测天体的第一个窗口。
  射电望远镜在二战后带动了天文学的振兴。如上个世纪60年代时类星体、脉冲星、星际分子和宇宙微波背景辐射这些被称为天文学的四大发现均由射电望远镜担纲。射电望远镜的每一次长足的进步都让天文学向前迈进了一步。
  1946年英国曼彻斯特大学建造了直径为66.5米的固定式抛物面射电望远镜,1955年又建成了当时世界上最大的可转动抛物面射电望远镜。
  上世纪60年代,美国在波多黎各阿雷西博镇建造了直径达305米的抛物面射电望远镜,它是顺着山坡固定在地表上的,不能转动,这是世界上最大的单孔径射电望远镜。
  1962年Ryle发明了综合孔径射电望远镜并获得了1974年诺贝尔物理学奖。综合孔径射电望远镜实现了由多个较小天线结构获得相当于大口径单天线所能取得的效果。
  上世纪70年代,德国在波恩附近建造了100米直径的全向转动抛物面射电望远镜,这是世界上最大的可转动单天线射电望远镜。
  上世纪80年代以来,欧洲的VLBI网、美国的VLBA阵、日本的空间VLBI相继投入使用,这是新一代射电望远镜的代表,它们在灵敏度、分辨率和观测波段上都大大超过了以往的望远镜。其中,美国的超长基线阵列(VLBA)由10个抛物天线组成,横跨从夏威夷到圣科洛伊克斯8 000千米的距离,其精度是哈勃太空望远镜的500倍,是人眼的60万倍。它所达到的分辨率相当于让一个站在纽约的人阅读位于洛杉矶的一张报纸。
  

太空望远镜(1)
众所周知,地球表面有一层厚厚的大气,它们是地球的保卫者。地球大气中各种粒子主要通过对天体辐射的吸收和反射,使得大部分波段范围内的天体辐射无法到达地面。人们把能到达地面的波段形象地称为“大气窗口”,这种“窗口”有三个:光学窗口、红外窗口、射电窗口。大气对于其他波段,比如紫外线、X射线、γ射线

小提示:按 回车 [Enter] 键 返回书目,按 ← 键 返回上一页, 按 → 键 进入下一页。 赞一下 添加书签加入书架