《怎样把仓鼠变成化石》

下载本书

添加书签

怎样把仓鼠变成化石- 第6部分


按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
不同区域之间就有着很多相连接的系统,但是随着我们发育成熟,大脑切断了那些不需要的连接。负责关联感觉的连接系统可能是那些在婴儿时期没有被斩断的部分连接系统。有些人认为一些字母、单词、数字或者一个星期中的每一天都具有鲜明的和不变的颜色。这是个不同寻常的结果,大约25个人中有一个人会这样。一小部分人甚至会把声音体会为具有颜色,或者是味道具有某种形状。据报道有一个这样的人,声称她可以知道奶液什么时候会变质,因为奶液的形状开始发抖了。         

。←虫←工←桥书←吧←  

第20节:形态漂移         

  形态漂移   

  用食用油和出的玉米粉,为什么会和气球有关?   

  在后面“和出来的疯狂”的实验里我们也会看到,玉米粉在一些科学演示过程中有很多用途。玉米粉具有出色的淀粉特性,可产生一些奇特的效果。本实验还和“不定性的水”中的实验效果有关,显示了很小的电负荷所具有的力量。   

  所需的材料   

  玉米粉   

  食用油   

  一个木勺(一定得是木勺,因为需要绝缘体)   

  一只充气气球   

  要做的事情   

  把食用油混入玉米粉,直到搅成浓糊状。在衣服上摩擦气球让其表面带电,就像在联欢会上摩擦气球将其粘在墙上的把戏一样,使用的都是摩擦产生静电的原理。取一些油玉米粉浆,抹在木勺上,如果在勺子上可形成缓慢向下滴淌的样子则效果最佳。慢慢地把滴淌着混合物的勺子拿到气球附近。   

  会看到的现象   

  当木勺距离气球足够近时,油玉米粉浆会变稠并且不再沿着木勺下淌,而是奔向气球。   

  究竟发生了什么   

  当摩擦气球时,其表面所产生的电荷为正电荷。在构成油玉米粉浆的微小淀粉颗粒靠近这种正电荷时,它们所带的负电子被拉向气球。正负电荷的作用类似磁极的作用,负电吸引正电,反之亦然。现在淀粉颗粒面向气球的一侧负电较强,结果使淀粉颗粒背向气球的另一侧正电更强。因为气球所带的正电荷与淀粉颗粒所带的负电间的相互吸引,所以油玉米浆会向木勺运动。淀粉颗粒偏正电的一侧由于没有气球或类似的带电负荷牵扯,因而不能阻止被拖着运动。   

  油玉米浆整体变稠的原因是,虽然由于油的绝缘作用,电荷不能在淀粉颗粒之间运动,但是却会依次相接聚集起来。而淀粉类颗粒接近气球的带负电的一面,被前面颗粒背离气球且带正电的一侧吸引,因而使所有的淀粉颗粒堆积得更加紧密。   

  附注:   

  玉米粉是一种有着许多用途的产品。顾名思义,玉米粉是用玉米制成的。它富含淀粉,因此在美国其名字是“玉米淀粉”。它被广泛用来为各种酱类制品增稠。不过它在烹调上的优势在于,只有在加热时它才会产生增稠作用。如果只是在少许凉水中加入玉米粉则不会有增稠作用发生。但是,把这样的混合物倒入加热的汤中或者是汤煲中,水和淀粉分子就开始互相黏结。淀粉分子不断扩大,并随着其扩大不断捕获水分子。在大约65℃,淀粉的这种结构裂解,形成筛状链接的淀粉和水分子,防止了水分子的自由运动,因而产生了稠稠的酱。         

※虹※桥※书※吧※。  

第21节:对准了再倒         

  对准了再倒   

  如果倒奶的速度太慢,为什么奶会从奶盒底部滴流下来?   

  当然,不只是奶会发生这样的情况。像把橘子汁和汤等很多液体从容器中倒出时,如果倾倒太慢,都会洒在地板上或把鞋子弄脏。避免这种情况不是那么容易。在往玻璃杯里倾倒时,如果当时容器很满,则除了微微洒出一些之外几乎没有什么其他选择。   

  所需的材料   

  一盒奶或其他什么饮料   

  一个玻璃杯   

  一块抹布(随后进行清洁)   

  如果想进一步展示这个效果,还将需要:   

  一个直立的圆柱体(洗干净的酒瓶即可)   

  一支点燃的蜡烛   

  如果实验者非常有信心,还将需要:   

  一个头发吹干器   

  一个乒乓球   

  要做的事情   

  打开奶盒,往一些杯子里倒奶;改变倒奶的速度,这样便可以在盒底见到从奶的滴落到一股奶的细流。   

  会看到的现象   

  倒奶的速度较低时,奶会顺着盒子边缘滴淌而下,然后才落地。这个落地点应该是那块抹布及时跟进的地方。倒奶的速度较快时,奶会流得很自如,你会带着信心把玻璃杯倒满。   

  究竟发生了什么   

  当盛满液体的盒子倾斜时,其中的液面会抬高,向盒子的开口处运动。随着盒子更加倾斜,液体涌向开口,在开口处形成压力。除了这个压力之外,还有表面张力作用在液体之上,表面张力倾向于把液体拉向盒子表面。在较高的倾倒速度下,该压力要比表面张力大得多,液体将以一种顺畅的方式离开盒子,沿一条预先期望的抛物线流向玻璃杯。   

  然而,在低的倾倒速度之下,会达到一个状态点。此时表面张力足以使液体流动的路径改变方向,这样一来,液体流不会干净利索地离开盒子口,而是附着到盒子的上部表面。一旦实现附着,倒出的液流在表面张力的作用下会倾向于继续黏着在该表面,形成被称为“康达效应(Coanda effect)”的现象。当液体流过凸起的表面时,这种效应就会发生,这时在液流和凸表面之间会产生内向的压力,有效地把液体流吸向表面,就像水龙头流出的一股小水流会沿着一把勺子的弯曲背面流动一样。   

  表面张力和康达效应联合作用的结果,使一些奶液奇怪地跨过奶盒顶面乱淌,流到奶盒的侧面,并最终快速地流到地板或你的鞋子上。   

  康达效应俗称附壁效应,是以亨利?康达(Henri Coanda; 1886—1972)的名字命名的。亨利?康达发明了用两个燃烧室推动的喷气飞机。当时他把两个燃烧室置于飞机的前部附近,在机身的两侧各置一个向后喷射气流。让亨利意想不到的是,在引擎点火后,喷出的火焰紧贴着机身的两侧直喷到机尾,而不是沿直线喷向引擎出口的后方。康达对这一问题进行了深入地研究,并由于这个效应的发现而闻名于世。   

  我们还应该考虑另外一种作用,该作用也会造成从容器向外倾倒液体时产生有偏差的液体射流。这种作用就是“咕咚效应(glugging)”,它发生在空气被吸入容器较狭小的开口去取代容器里失去的液体的时候。这种作用使液体倒出的射流发生震动,即使在相对较高的倾倒速度的情况下,也会导致周期性的附壁效应。   

  附注:   

  因为液体具有围绕某个表面流动这种一般趋势,所以康达效应在许多场合都可以见到。这可用一个演示方法进行尝试。在桌子上放一个直立的圆柱体(洗干净的酒瓶即可),把一支点燃的蜡烛放在它的后侧。当你对着酒瓶吹气时,尽管酒瓶明显地挡住了吹出的气,但蜡烛还是灭了。这是因为气流沿着瓶子绕过并在另一侧重新汇聚一处,而不是被偏转散开。   

  现在拿一个头发风干机,调到冷风挡并让气流垂直向上。如果风干机的口大约与乒乓球相仿,效果会最好。此时,可以把乒乓球放在气流之中,球会在那里十分欢快地上下跳动而不会掉下来(找到合适的点会有些难度,所以可能要试验几次才能成功)。这又是一个气流黏附某个表面的例子。这里气流黏附的是乒乓球的表面,球也是因康达效应而被保持在某个位置。由于这种作用相当强大,如果想让球离开风干机,你将需要把风干机倾斜,稍微偏离垂直方向,才能让球的重力作用胜出。   

  想阅读更多吗?   

  在。allstar。fiu。edu/aero/coanda。htm网页上,可以找到造于1910年的第一架真正的喷气机“康达号1910”的照片,以及设计者的有关信息。         

◇欢◇迎访◇问◇BOOK。◇  

第22节:和弄着的东西(1)         

  和弄着的东西   

  假设你正在搅拌一杯诸如茶水之类的饮品,如果你搅拌得较快,为什么杯中的茶叶会聚向茶杯中央?   

  单凭直觉,杯里水中的东西应该向外而不是向内奔,那么发生了什么呢?街市上一些玩把戏的人可能会让你相信茶叶片具有超自然的特性,但这种谎言中不存在真理。因此,我们必须立足于真理的古老基石——真正的科学。   

  所需的材料   

  散片茶叶(沏出水后应成一些单个叶片,袋装茶不可)   

  一个茶杯或茶缸   

  热水   

  一个小勺   

  要做的事情   

  把茶叶放入茶缸,倒入热水,然后搅拌并观察发生的情况。要是你有点口渴,实验后还可以把茶水喝掉,如果愿意不妨再加点柠檬、糖或者奶什么的。但是如果你习惯了饮用袋茶,可要准备好用牙齿挡住茶叶。   

  会看到的现象   

  随着搅动的开始,漂着的茶叶片全都会向茶缸的中央运动。在加速搅拌时,叶片会更加迅速地漂向中央。   

  究竟发生了什么         

※虹※桥※书※吧※BOOK。※  

第23节:和弄着的东西(2)         

  答案就在发生于旋转流体中的被称为“压力—动量平衡”的过程之中。我们搅动所形成的旋转流体将会被保持在茶缸之中,而不是去冲破茶缸的四壁,这样流体的旋转形成的内力应该被流体内的梯度压力抵消。压力在中心位置最低并向茶缸壁的方向逐渐增高。思考一下拴在绳子一端被抡动的重物,绳子的拉力阻止了

小提示:按 回车 [Enter] 键 返回书目,按 ← 键 返回上一页, 按 → 键 进入下一页。 赞一下 添加书签加入书架